Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress.

Identifieur interne : 000F56 ( Main/Exploration ); précédent : 000F55; suivant : 000F57

The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress.

Auteurs : Lindsey A. Baker [États-Unis] ; Beatrix M. Ueberheide ; Scott Dewell ; Brian T. Chait ; Deyou Zheng ; C David Allis

Source :

RBID : pubmed:23878396

Descripteurs français

English descriptors

Abstract

Regulation of gene expression is a vital part of the cellular stress response, yet the full set of proteins that orchestrate this regulation remains unknown. Snt2 is a Saccharomyces cerevisiae protein whose function has not been well characterized that was recently shown to associate with Ecm5 and the Rpd3 deacetylase. Here, we confirm that Snt2, Ecm5, and Rpd3 physically associate. We then demonstrate that cells lacking Rpd3 or Snt2 are resistant to hydrogen peroxide (H2O2)-mediated oxidative stress and use chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to show that Snt2 and Ecm5 recruit Rpd3 to a small number of promoters and in response to H2O2, colocalize independently of Rpd3 to the promoters of stress response genes. By integrating ChIP-seq and expression analyses, we identify target genes that require Snt2 for proper expression after H2O2. Finally, we show that cells lacking Snt2 are also resistant to nutrient stress imparted by the TOR (target of rapamycin) pathway inhibitor rapamycin and identify a common set of genes targeted by Snt2 and Ecm5 in response to both H2O2 and rapamycin. Our results establish a function for Snt2 in regulating transcription in response to oxidative stress and suggest Snt2 may also function in multiple stress pathways.

DOI: 10.1128/MCB.00025-13
PubMed: 23878396
PubMed Central: PMC3811877


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress.</title>
<author>
<name sortKey="Baker, Lindsey A" sort="Baker, Lindsey A" uniqKey="Baker L" first="Lindsey A" last="Baker">Lindsey A. Baker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ueberheide, Beatrix M" sort="Ueberheide, Beatrix M" uniqKey="Ueberheide B" first="Beatrix M" last="Ueberheide">Beatrix M. Ueberheide</name>
</author>
<author>
<name sortKey="Dewell, Scott" sort="Dewell, Scott" uniqKey="Dewell S" first="Scott" last="Dewell">Scott Dewell</name>
</author>
<author>
<name sortKey="Chait, Brian T" sort="Chait, Brian T" uniqKey="Chait B" first="Brian T" last="Chait">Brian T. Chait</name>
</author>
<author>
<name sortKey="Zheng, Deyou" sort="Zheng, Deyou" uniqKey="Zheng D" first="Deyou" last="Zheng">Deyou Zheng</name>
</author>
<author>
<name sortKey="Allis, C David" sort="Allis, C David" uniqKey="Allis C" first="C David" last="Allis">C David Allis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23878396</idno>
<idno type="pmid">23878396</idno>
<idno type="doi">10.1128/MCB.00025-13</idno>
<idno type="pmc">PMC3811877</idno>
<idno type="wicri:Area/Main/Corpus">000F86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F86</idno>
<idno type="wicri:Area/Main/Curation">000F86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F86</idno>
<idno type="wicri:Area/Main/Exploration">000F86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress.</title>
<author>
<name sortKey="Baker, Lindsey A" sort="Baker, Lindsey A" uniqKey="Baker L" first="Lindsey A" last="Baker">Lindsey A. Baker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ueberheide, Beatrix M" sort="Ueberheide, Beatrix M" uniqKey="Ueberheide B" first="Beatrix M" last="Ueberheide">Beatrix M. Ueberheide</name>
</author>
<author>
<name sortKey="Dewell, Scott" sort="Dewell, Scott" uniqKey="Dewell S" first="Scott" last="Dewell">Scott Dewell</name>
</author>
<author>
<name sortKey="Chait, Brian T" sort="Chait, Brian T" uniqKey="Chait B" first="Brian T" last="Chait">Brian T. Chait</name>
</author>
<author>
<name sortKey="Zheng, Deyou" sort="Zheng, Deyou" uniqKey="Zheng D" first="Deyou" last="Zheng">Deyou Zheng</name>
</author>
<author>
<name sortKey="Allis, C David" sort="Allis, C David" uniqKey="Allis C" first="C David" last="Allis">C David Allis</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="eISSN">1098-5549</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antifungal Agents (pharmacology)</term>
<term>Chromatin Immunoprecipitation (MeSH)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Drug Resistance, Fungal (drug effects)</term>
<term>Drug Resistance, Fungal (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Histone Deacetylases (genetics)</term>
<term>Histone Deacetylases (metabolism)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Immunoblotting (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Oxidants (pharmacology)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Protein Binding (MeSH)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Ubiquitin-Protein Ligases (genetics)</term>
<term>Ubiquitin-Protein Ligases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Histone deacetylases (génétique)</term>
<term>Histone deacetylases (métabolisme)</term>
<term>Immunoprécipitation de la chromatine (MeSH)</term>
<term>Immunotransfert (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxydants (pharmacologie)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de liaison à l'ADN (génétique)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>RT-PCR (MeSH)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Résistance des champignons aux médicaments (effets des médicaments et des substances chimiques)</term>
<term>Résistance des champignons aux médicaments (génétique)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Ubiquitin-protein ligases (génétique)</term>
<term>Ubiquitin-protein ligases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Histone Deacetylases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Ubiquitin-Protein Ligases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Histone Deacetylases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Ubiquitin-Protein Ligases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Hydrogen Peroxide</term>
<term>Oxidants</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Drug Resistance, Fungal</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Résistance des champignons aux médicaments</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Drug Resistance, Fungal</term>
<term>Promoter Regions, Genetic</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Histone deacetylases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Régions promotrices (génétique)</term>
<term>Résistance des champignons aux médicaments</term>
<term>Saccharomyces cerevisiae</term>
<term>Ubiquitin-protein ligases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Histone deacetylases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Saccharomyces cerevisiae</term>
<term>Ubiquitin-protein ligases</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Oxydants</term>
<term>Peroxyde d'hydrogène</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatin Immunoprecipitation</term>
<term>Gene Expression Profiling</term>
<term>Immunoblotting</term>
<term>Mutation</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Oxidative Stress</term>
<term>Protein Binding</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de séquence d'ADN</term>
<term>Immunoprécipitation de la chromatine</term>
<term>Immunotransfert</term>
<term>Liaison aux protéines</term>
<term>Mutation</term>
<term>RT-PCR</term>
<term>Stress oxydatif</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Regulation of gene expression is a vital part of the cellular stress response, yet the full set of proteins that orchestrate this regulation remains unknown. Snt2 is a Saccharomyces cerevisiae protein whose function has not been well characterized that was recently shown to associate with Ecm5 and the Rpd3 deacetylase. Here, we confirm that Snt2, Ecm5, and Rpd3 physically associate. We then demonstrate that cells lacking Rpd3 or Snt2 are resistant to hydrogen peroxide (H2O2)-mediated oxidative stress and use chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to show that Snt2 and Ecm5 recruit Rpd3 to a small number of promoters and in response to H2O2, colocalize independently of Rpd3 to the promoters of stress response genes. By integrating ChIP-seq and expression analyses, we identify target genes that require Snt2 for proper expression after H2O2. Finally, we show that cells lacking Snt2 are also resistant to nutrient stress imparted by the TOR (target of rapamycin) pathway inhibitor rapamycin and identify a common set of genes targeted by Snt2 and Ecm5 in response to both H2O2 and rapamycin. Our results establish a function for Snt2 in regulating transcription in response to oxidative stress and suggest Snt2 may also function in multiple stress pathways. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23878396</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5549</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>33</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress.</ArticleTitle>
<Pagination>
<MedlinePgn>3735-48</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/MCB.00025-13</ELocationID>
<Abstract>
<AbstractText>Regulation of gene expression is a vital part of the cellular stress response, yet the full set of proteins that orchestrate this regulation remains unknown. Snt2 is a Saccharomyces cerevisiae protein whose function has not been well characterized that was recently shown to associate with Ecm5 and the Rpd3 deacetylase. Here, we confirm that Snt2, Ecm5, and Rpd3 physically associate. We then demonstrate that cells lacking Rpd3 or Snt2 are resistant to hydrogen peroxide (H2O2)-mediated oxidative stress and use chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to show that Snt2 and Ecm5 recruit Rpd3 to a small number of promoters and in response to H2O2, colocalize independently of Rpd3 to the promoters of stress response genes. By integrating ChIP-seq and expression analyses, we identify target genes that require Snt2 for proper expression after H2O2. Finally, we show that cells lacking Snt2 are also resistant to nutrient stress imparted by the TOR (target of rapamycin) pathway inhibitor rapamycin and identify a common set of genes targeted by Snt2 and Ecm5 in response to both H2O2 and rapamycin. Our results establish a function for Snt2 in regulating transcription in response to oxidative stress and suggest Snt2 may also function in multiple stress pathways. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>Lindsey A</ForeName>
<Initials>LA</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ueberheide</LastName>
<ForeName>Beatrix M</ForeName>
<Initials>BM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dewell</LastName>
<ForeName>Scott</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chait</LastName>
<ForeName>Brian T</ForeName>
<Initials>BT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Deyou</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Allis</LastName>
<ForeName>C David</ForeName>
<Initials>CD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GEO</DataBankName>
<AccessionNumberList>
<AccessionNumber>GSE43002</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM040922</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41 GM103314</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM103511</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 GM103511</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM40922</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM103314</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA09673</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 CA009673</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C584400">Ecm5 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016877">Oxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.27</RegistryNumber>
<NameOfSubstance UI="C577606">Snt2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.27</RegistryNumber>
<NameOfSubstance UI="D044767">Ubiquitin-Protein Ligases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.-</RegistryNumber>
<NameOfSubstance UI="C071665">RPD3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.98</RegistryNumber>
<NameOfSubstance UI="D006655">Histone Deacetylases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Mol Cell Biol. 2013 Oct;33(19):3726-7</RefSource>
<PMID Version="1">23938299</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047369" MajorTopicYN="N">Chromatin Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025141" MajorTopicYN="N">Drug Resistance, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006655" MajorTopicYN="N">Histone Deacetylases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015151" MajorTopicYN="N">Immunoblotting</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016877" MajorTopicYN="N">Oxidants</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044767" MajorTopicYN="N">Ubiquitin-Protein Ligases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23878396</ArticleId>
<ArticleId IdType="pii">MCB.00025-13</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.00025-13</ArticleId>
<ArticleId IdType="pmc">PMC3811877</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 Jan 10;415(6868):141-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11805826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Oct 20;24(2):211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17052455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Sep 2;43(5):823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21884982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(11):R167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19040720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Nov 18;123(4):593-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(8):R86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20738864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Nov 18;123(4):581-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Dec;46(5):1429-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12453227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2004 Dec;21(16):1365-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15565582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Dec;12(12):833-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22048664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Apr;190(4):1157-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):737-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19289445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2012;10(7):e1001369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22912562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Mar;29(6):1401-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jun 12;20(9):1466-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Dec 26;32(6):878-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19111667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Jul;11(7):2335-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Mar;27(6):2037-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Nov;27(21):7414-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17785431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D136-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20972212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 2;431(7004):99-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15343339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1996 Mar 15;12(3):267-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8904339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2010 May;76(4):1049-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 11;280(10):9149-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15637049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011 Jan 4;7:458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21206491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1999 Jan;145 ( Pt 1):231-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10206703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(9):R137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Apr 12;446(7137):806-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17314980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2011 May;2011(5):pdb.prot5610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Funct Genomics. 2001;2(3):124-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18628907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1217-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18178164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 15;26(6):841-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20110278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Mol Biol. 2005 Feb;Chapter 21:Unit 21.3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18265358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Integr Biol. 2010 Jul;3(4):327-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20798817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Jan;29(1):24-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21221095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Dec;66(4):579-91, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jan 22;427(6972):370-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14737171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14503-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8962081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2007 Nov;4(11):951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17922018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2011 May;2011(5):pdb.prot5611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Nov 20;284(47):32914-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19759026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Feb 27;423(3):275-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9515723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Oct;2(5):962-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e36295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22570702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Oct;15(10):1451-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(5):R57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Mol Biol. 2010 Jan;Chapter 19:Unit 19.10.1-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20069535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Dec;131(5):1133-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8522578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Oct;147(2):435-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Mar 18;200(6):839-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23509072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2000 Oct;24(4):469-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(4):e5029</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Apr 1;16(7):1710-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9130715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Aug;28(4):327-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11455386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2000 Feb;16(2):51-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10652526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Nov 15;25(22):3043-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Mol Biol. 2001 May;Chapter 13:Unit13.12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18265096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1992 Apr;21(4-5):269-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1525853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Feb;12(2):323-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179418</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Allis, C David" sort="Allis, C David" uniqKey="Allis C" first="C David" last="Allis">C David Allis</name>
<name sortKey="Chait, Brian T" sort="Chait, Brian T" uniqKey="Chait B" first="Brian T" last="Chait">Brian T. Chait</name>
<name sortKey="Dewell, Scott" sort="Dewell, Scott" uniqKey="Dewell S" first="Scott" last="Dewell">Scott Dewell</name>
<name sortKey="Ueberheide, Beatrix M" sort="Ueberheide, Beatrix M" uniqKey="Ueberheide B" first="Beatrix M" last="Ueberheide">Beatrix M. Ueberheide</name>
<name sortKey="Zheng, Deyou" sort="Zheng, Deyou" uniqKey="Zheng D" first="Deyou" last="Zheng">Deyou Zheng</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Baker, Lindsey A" sort="Baker, Lindsey A" uniqKey="Baker L" first="Lindsey A" last="Baker">Lindsey A. Baker</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23878396
   |texte=   The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23878396" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020